Marginal Inference in MRFs using Frank-Wolfe
نویسندگان
چکیده
We introduce an algorithm, based on the Frank-Wolfe technique (conditional gradient), for performing marginal inference in undirected graphical models by repeatedly performing MAP inference. It minimizes standard Bethe-style convex variational objectives for inference, leverages known MAP algorithms as black boxes, and offers a principled means to construct sparse approximate marginals for high-arity graphs. We also offer intuition and empirical evidence for a relationship between the entropy of the true marginal distribution of the model and the convergence rate of the algorithm. We advocate for further applications of Frank-Wolfe to marginal inference in Gibbs distributions with combinatorial energy functions.
منابع مشابه
Barrier Frank-Wolfe for Marginal Inference
We introduce a globally-convergent algorithm for optimizing the tree-reweighted (TRW) variational objective over the marginal polytope. The algorithm is based on the conditional gradient method (Frank-Wolfe) and moves pseudomarginals within the marginal polytope through repeated maximum a posteriori (MAP) calls. This modular structure enables us to leverage black-box MAP solvers (both exact and...
متن کاملGraph Walks and Graphical Models
Inference in Markov random fields, and development and evaluation of similarity measures for nodes in graphs, are both active areas of data-mining research. In this paper, we demonstrate a formal connection between inference in tree-structured Markov random fields and personalized PageRank, a widely-used similarity measure for graph nodes based on graphwalks. In particular we show a connection ...
متن کاملOn Iteratively Constraining the Marginal Polytope for Approximate Inference and MAP
We propose a cutting-plane style algorithm for finding the maximum a posteriori (MAP) state and approximately inferring marginal probabilities in discrete Markov Random Fields (MRFs). The variational formulation of both problems consists of an optimization over the marginal polytope, with the latter having an additional non-linear entropy term in the objective. While there has been significant ...
متن کاملBethe Bounds and Approximating the Global Optimum
Inference in general Markov random fields (MRFs) is NP-hard, though identifying the maximum a posteriori (MAP) configuration of pairwise MRFs with submodular cost functions is efficiently solvable using graph cuts. Marginal inference, however, even for this restricted class, is in #P. We prove new formulations of derivatives of the Bethe free energy, provide bounds on the derivatives and bracke...
متن کاملNew Outer Bounds on the Marginal Polytope
We give a new class of outer bounds on the marginal polytope, and propose a cutting-plane algorithm for efficiently optimizing over these constraints. When combined with a concave upper bound on the entropy, this gives a new variational inference algorithm for probabilistic inference in discrete Markov Random Fields (MRFs). Valid constraints on the marginal polytope are derived through a series...
متن کامل